Inverse scattering for shape and conductivity
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Abstract
We the of
determining both the shape and the conductivity of a

consider mverse  problem

two-dimensional conducting scatterer from a
knowledge of the far-field pattern of TM waves by
solving the 1ll posed nonlinear equation. Based on
the boundary condition and the measured scattered
field, a set of nonlinear integral equations is derived
and the imaging problem is reformulated into an
optimization problem. Satisfactory recenstructions
have been achieved by the genetic aigorithm.
Numerical results demonstrated that, even when the
intial guess s far away from the exact one, good
reconstruction has been obtained. Numencal results
show that multiple incident directions permit good

reconstruction of shape and conductivity.

1. INTRODUCTION
This paper deals
determining both the

with the question of
shape and the wvariable
conductivity from a knowledge of the far-field
pattern of the scattered wave for a set of incident TM
Waves. ,

The usual inverse obstacle scattering problem
is to determine the shape of the obstacle given
information about the far-field patten of the
scattered wave from each of a set of incident fields.
We in  addition to the

are asking recover
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conductivities of the obstacle, given these are of
variable conductivity type. Carrying this idea further
we can ask if it is possible, by modifying the
conductivity values of the boundary of an obstacle, to
make it appear from a scattering experiment standpoint
as some object of a different shape.

In this paper, the electromagnetic imaging of a
variable conducting cvlinder in free space is
investigated. The genetic algorithm {i] is used to
recover not only the shape but also the conductivity of
a scatterer, by using only the scattered field. The
method is potentially important in medical imaging
and biological application. In Section II, a theoretical
formulation for the eclectromagnetic imaging is
presented. The general principle of genetic algorithms
and the way we applied them to the imaging problem
are described. Numerical results for objects of
different shapes and conductivities are given in
Section II. Finally, some conclusions are drawn in
Section IV. ' '

IL. THEORETICAL FORMULATION

Let us consider an imperfectly conducting
cylinder with conductivity 0'(!9) in free space. The
metallic cylinder with cross section described in polar

coordinates in xy plane by the equation p = F(Q ) is



illuminated by transverse magnetic (TM) waves. We
assume that time dependence of the field is harmonic

with the factor exp( jof ). Let E, denote the

incident field with incident angle ¢, shown in Fig. 1.
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Fig. 1 Geometry of the problem in (x,y) plane

Then the incident field is given by

Ei(X, y) — e-jk(.rsinm.vcoswli_‘, Lk e zgoyo (1)
At an arbitrary point {x y) in Cartesian coordinates
or (#,8) in polar coordinates outside the scattered

field, expressed by

E =F-F can be

i
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with  J(6)=—jouJF(O)+ F* (@) (6) - H; 18

the Hankel function of second kind of order zero,

and J (@) is the induced surface current density.

The boundary condition for an imperfectly
conducting scatterer with finite conductivity can be
approximated by assuming that the total tangential
electnic field on the scatterer surface is related to
surface current density through a surface impedance

Z (w):
AxE=hx(Z.J.) 3)

where 7 is the outward unit vector normal to the
surface of the scatterer. The surface impedance is

expressed in [2] a8 7 (».0)= Jjou, /o) The boundary

condition at the surface of the scatterer given by (3)
then vield an integral equation for J(&):

E (F(8).68)= J’:"%H (k) (80 )d 8+ (4)
‘ J(8)

I wH G(H [r @y £ 8
where

1(6,8)=[F @)+F (@) -2FO)F (@ )cosf )]~
For the direct scattering problem, the scattered

field, E,, is calculated by assuming that the shape

and the conductivity of the object are known. This can
be achieved by first solving J in {4) and calculating

E_ in (2). Let us consider the following inverse

5

problem, the shape function F'(£#) and conductivity

function o(6) can be expanded as:

Ni2 N/2

F(®)= ZB cos(n9)+ZC sin(#6) (3)

n=l

M2 M2

a(é) ZD cos(m9)+ZE sin{m®)

m=0

where B, C , D, and E, are real coefficient

n?

to be determined, and (N+1)+(M+1) is the number of

unknowns for shape function and conductivity
function. The genetic algorithm is used to minimize

the following cost function:
1 133 cal eXx] -v
cr- {3 3le) e e ey O)

where Z,

is the total number of measured points.

EX(F) and E] “(F) are the measured scattered field
and the calculated scattered field respectively. The

minimization of a|F '((9)'2 can, to a certain extent,
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be interpreted as the smoothness requirement for the
boundary of F (H) The basic GA for which a

flowchart is shown in Fig. 2 starts with a large
population containing a total of X candidates. Each
candidate is described by a chromosome. Then the
initial population can simply be created by taking X
random chromosomes. Finally, the GA iteratively
generates a new population which is derived from
the previous population through the application of

the reproduction, crossover, and mutation operators.
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Fig. 2 The flowchart of GA

I NUMERICAL RESULTS
By a numerical simulation we illustrate the
performance of the proposed in'version algorithm.,
The frequency of the tncident wave 1s chosen to be 3
GHz; i.¢., the wavelength A is 0.1 m. In the
example, the size of the seatterer is about one third
the wavelength, so the frequency is in the resonance

range. The shape and conductivity function are

chosen to be:

F(#)={0.03+0.005cos @ +0.009 c0s26)m and

a{6)=(80+12c098+15c020+10sin-+18sin26) S/m.

The reconstructed shape and conductivity function for

the best population member are plotted in Fig. 3(a) and
Fig. 3(b) with the error shown in Fig. 3(c), where DR
and DSIG are called shape function and conductivity

discrepancies respectively.
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Fig. 3(a) Shape function. The star curve represents the exacl

shape , while the solid curves are calculated shape in

iteration process.
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Fig. 3(b) Conductivity function. The star curve represenis the
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exact conductivity, white the solid curves are

calculated conductivity in iteration process.



Fig. 3(c} Shape function error and conductivity function srror
DR = 1L S 1F(6,) - FUO)E /P 03"
A 1\)., P P 1 1

N
DSIG = (= 3 [™(6) ~ 06, 1o (8)1*

1=

where N' is set fo 60. Quantities DR and DSIG

measures  of how  wall

Fe(0)

provide
approximates £(@) and o (8) approximates

0'(9). respectively. Erom Fig. 3, it is clear that the

reconstructions of the shape and conductivity
function are quite good. In addition, we also see that
the reconstruction of conductivity function does not
change rapidly foward the exact Value until DR is
small enough. This can be explained by the fact that
the shape makes a stronger contribution to the
scattered field than the conductivity function does.
In other words, the reconstruction of the shape
function has a higher priority than the reconstruction

of the conductivity function.

IV. CONCLUSIONS
We have presented a study of applying the
genetic  algorithm  to reconstruct the shape and
conductivity of a metallic object through knowledge
of scattered field. Based on the boundary condition
and measured scattered field, we have derived a set
of nonlinear integral equations and reformulated the

imaging problem into an optunization problem. By

using the genetic algorithm, the shape and
conductivity of the object can be reconsiructed. Even
when the initial guess is far from exact, the genetic
algorithm converges to a global extreme of the cost
function, while the gradient-based methods often get
stuck in a local extreme. Good reconstruction has been
obtained from the scattered fields both with and
without the additive Gaussian noise. Numerical results
also illustrate that the conductivity is more sensitive to
noise than the shape function is. According to our
experience, the main difficulties in applying the
genetic algorithm to this problem are how to choose

the parameters, such as the population size (X ), bit

length of the string (L), crossover probability ( p, ),

and mutation probability ( p ). Different parameter

sets will affect the speed of convergence as well as the

computing time required. From the numerical

simulation, it is coricluded that a population size from

300 to 600, a string length from 8 to 16 bits. and p_

and p, in the ranges of 0.7< p <09 and

0.0005< p,, <0.05 are suitable for imaging problems of

this type.
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