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Abstract 
We consider the inverse problem of 

detemiining both the shape and the conductivity of a 
hvo-dimensional conducting scatterer from a 
knowledge of the far-field pattem of TM waves by 
solving the i l l  posed nonlinear equation. Based on 
the boundary condition and the measured scattered 
field: a set of nonlinear integral equations is derived 
and the imaging problem is reformulated into an 
optimization problem. Satisfactory reconstructions 
have been achieved by the genetic algorithm. 
Numerical rcsults demonstrated that: even when the 
initial giiess is far away from the exact one, good 
reconstruction has been obtained. Numerical results 
show that multiple incident directions permit good 
reconstruction of shape and conductivity. 

I. INTRODUCTION 
This paper deals with the question of 

determining both the shape and the variable 
conductivity from a knowledge of the far-field 
pattern of the scattered wave for a set of incident TM 
\laves. 

The usual inverse obstacle scattering problem 
is to detemiine the shape of the obstacle given 
information about the far-field pattem of the 
scattered wave from each of a set of incident fields. 
We are asking in addition to recover the 

conductivities of the obstacle, given these are of 
variable conductivity type. Carrying this idea further 
we can ask if it is possible, by modifying the 
conductivity values of the boundary of an obstacle, to 
make it appear from a scattering experiment standpoint 
as some object of a different shape. 

In this paper, the electromagnetic imaging of a 
variable conducting cylinder in free space is 
investigated. The genetic algorithm [l] is used to 
recover not only the shape but also the conductivity of 
a scatterer, by using only the scattered field. Tlie 
method is potentially importmt in medical imaging 
and biological application. In Section II? a theoretical 
foholation .for the electromagnetic imaging is 
presented. The general principle of genetic algorithms 
and the way we applied them to the imaging problem 
are described. Numerical results for objects of 
different shapes and conductivities are given in 
Section 111. Finally, some conclusions are drawn in 
Section IV 

11. THEORETICAL FORMULATION 
Let us consider an imperfectly conducting 

cylinder with conductivity a(@) in free space. The 

metallic cylinder with cross section described in polar 

coordinates in xy plane by the equation p = F@).  is 
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illuminated by transverse magnetic (TM) waves. We 
assume that time dependence of the field is hamIonic 

with the factor exp( jot ). Let Ei denote the 

incident field with incident angleb, shown in Fig. 1 
1' 

t 

Fig. 1 Geometry oftha problcin in (xy) plane 

Then the incident field is given by 

At an arbitrm pomt (x, y )  i n  Cartesian coordlnaies 

or ( r , Q )  III polar coordinates outside the scattered 

field. Es = E-E, c a i  be expressed by 

the Hankel function of second kind of order zero, 

and J,(@ is the induced surface current density 

The boundav condition for an imperfectly 
conducting scatterer with finite conductivity can be 
approximated by assuming that the total tangential 
electric field on the scatterer surface is related to 
surface current density through a surface impedance 
Z,(w): 

f i x  E =  ri x (ZJ,) (3) 

\\here f i  is the outward unit vector normal to the 
surface of the scatterer. Tlie sulface impedance is 

expressed in [2]  as Z , ( ~ . B )  4-1. The boundan 

condition at the surface of the scattercr given by (3) 
then yield an integral equation for ~ ( 6 ' ) :  

E ,  ( F  (t) ), B ) = j0:= L4 4 ; * I  (b- ) J  ( 0  ) d  t) I+ ( 4 )  
J ( 6 )  J.Jxm 

where 

r,(B,B) =[F2(B)+F2(8)-2F(B)F(B)c0ss-8)1"1 

For the direct scattering problem, the scattered 

field, Ex, is calculated by assuming that the shape 

and the conductivity of the object are known. This can 
be achieved by first solving J in (4) and calculating 

E, in (2). Let us consider the following'inverse 

problem, the shape function F ( 6 )  and conductivity 

function o(B)  can be expanded as: 

where Bn ~ c2,, D,, and E,, are real coefficient 

to be determined, and (N+l)+(M+l) is the number of 
unkiowns for shapc function and conductivity 
function. The genetic algorithm is used to minimize 
the Ibllowing cost function: 

where Z, is the total number of measured points. 

E;yp(F) and q ' ( F )  are the measured scattered field 

and the calculated scattered field respectively. The 

minimization of alF'(~)l '  can, to a certain extent, 
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bc interpreted as the smoothness requirement for the 

hounday of F ( @ ) .  The hasic G.4 for which a 

flowchart is shown in Fig. 2 s t a h  with a large 
population containing a total of X candidates. Each 
candidate is described by a chromosome. Then the 

initial population can simply be created by taking X 
random chromosomes. Finally. the G.4 iteratively 
generates a new population which is derived from 
the previous population through the application of 
the reproduction; crossover$ and mutation operators. 

Fig. 2 The flowchat ofGA 

111. NUNERICAL RESULTS 
By a numerical simulation we illustrate the 

performance of the proposed inversion algorithm. 
The frequency of the incident wave is chosen to he 3 
GI+, i.e., the vvavelen_gth )b is 0.1 m. In the 
example, the size of the scatterer is about one third 
the wavelength, so the frequency is in the resonance 
range. The shape and conductivity function are 

~ 
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chosen to be: 

F(B)= (0.03+0.005cos6'+0.009cos26')m and 

48) =(S@t 12c0@+15coSB+l OSinB+l %inW) Sim 

The reconstructed shape and conductivity function for 
the best population member are plotted in Fig. ;(a) and 
Fig. 3@) with the error shown in Fig. 3(c), where DR 
and DSIG are called shape hnction and conductivity 
discrenancies remectivelv. 

Fig. 3@) Conductivity function. The star curve represents the 

ewct conductivity, wtule the solid curves are 

calculated conductivity in iteration process. 



Fig. 3ic) Shape function error and conductivity function error 

B’ 

DSIG = ;Tz[~re(~,)- CTCL?, j ] ’ / ~ ’ ( ~ , ) } ’ ’ ’  

where N‘ is set to 60. Quantities DR and DSlG 

provide meastires of how well F‘“(6’) 

approximates F(O)  and oCd (e) approximates 

a(B). respectively. From Fig. 3. it is clear that the 

reconshwtions of tlie shape and conductivity 
fiinction are quite good. In addition, we also see tliat 
tlis reconstruction of conductivity function does not 

change rapidly toward the exact Value until DR is 
small enough. Tlis can be explained by the fact that 
the shapz makes a stronger contribution to the 
scattered field than the conductivity fiinction does. 
In other words, tlie reconslstruction of the shape 
function has a liidier priority that1 tlie reconstruction 
ofthe conductivity function. 

, , = I  

IV. CONCLUSIONS 
We have presented rl shidy of applying tlie 

- genetic al_eorithm to reconstmct tlie shape and 
conductivity of a nietallic object through hiowledge 
of scattered field. Based on the boundary condition 
and measured scattered field, we have derived a set 
of nonlinear integral equations and refoniiulated the 

imaging problem into an optimizalion problem. By 
using the genetic algorithm, the shape and 
conductivity of the object can bc reconshucted. Even 
when the initial guess is far ftom exact, the genetic 
algorithm converges to a global exheme of the cost 
function, while tlie gradient-based methods often get 
stuck in a local exhenie. Good reconstruction has ben1 

obtained from the scattered fields both with and 
without tlie additive Gaussian noise. Numerical results 
also illustrate tliat the conductivity is more sensilive to 
noise than the shape fiinction is. According to ow 
expzrience, tlie main difficulties in  applying tlie 
genetic algorithm to this problem are how to choose 
the parameters, sucli as the population size ( X ), bit 

length of the string ( L  ): crossover probability ( p ,  )* 

and niutation probability ( p ,  ). Different parameter 

sets will aflect the speed of convergence as well as the 
computing time required. From the niniierical 
simulation, it is concluded that a population size from 

300 to 600, a string length from 8 to 16 bits, and p ,  

and p ,  in the ranges of 0.7< p ,  4 . 9  and 

0.0005<p,n <0.05 are suitable for imaging problems of 

this lype 
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